A discontinuous Galerkin method for the Cahn-Hilliard equation

نویسندگان

  • Garth N. Wells
  • Ellen Kuhl
  • Krishna Garikipati
چکیده

A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite element methods, coupled equations or interpolation functions with a high degree of continuity that have been employed in the literature to treat the fourth-order spatial derivatives. The variational formulation of the discontinuous Galerkin method, its implementation and numerical examples are presented. In this communication, it is also shown under what conditions the method is stable, and an error estimate in an energy-type norm is presented. The method is evaluated by comparison with a standard finite element treatment in which the Cahn–Hilliard equation is decomposed into two coupled partial differential equations. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local discontinuous Galerkin methods for the Cahn-Hilliard type equations

In this paper we develop local discontinuous Galerkin (LDG) methods for the fourth-order nonlinear Cahn-Hilliard equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system in one and two dimensions are presented and the numerical results illustrate the accuracy and capabili...

متن کامل

A Posteriori Error Analysis for the Cahn-hilliard Equation

The Cahn-Hilliard equation is discretized by a Galerkin finite element method based on continuous piecewise linear functions in space and discontinuous piecewise constant functions in time. A posteriori error estimates are proved by using the methodology of dual weighted residuals.

متن کامل

Unconditional Energy Stability Analysis of a Second Order Implicit-Explicit Local Discontinuous Galerkin Method for the Cahn-Hilliard Equation

Abstract In this article, we present a second-order in time implicit-explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn-Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn-Hilliard equation has a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Cahn-Hilliard...

متن کامل

Application of the Local DiscontinuousGalerkinMethod for the Allen-Cahn/Cahn-Hilliard System

In this paper, we consider the application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. The method in this paper extends the local discontinuous Galerkin method in [10] to the more general application system which is coupled with the Allen-Cahn and Cahn-Hilliard equations. Similar energy stability result as that in [10] is presented. Numerical results for ...

متن کامل

Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition

Fully discrete discontinuous Galerkin methods with variable meshes in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2006